kmeans_example.py 1.94 KB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function

# $example on$
from pyspark.ml.clustering import KMeans
# $example off$

from pyspark.sql import SparkSession

"""
An example demonstrating k-means clustering.
Run with:
  bin/spark-submit examples/src/main/python/ml/kmeans_example.py

This example requires NumPy (http://www.numpy.org/).
"""


if __name__ == "__main__":

    spark = SparkSession\
        .builder\
        .appName("PythonKMeansExample")\
        .getOrCreate()

    # 例子
    # 加载数据
    dataset = spark.read.format("libsvm").load("sample_kmeans_data.txt")#加载数据

    # Trains a k-means model.
    kmeans = KMeans().setK(2).setSeed(1)  #k-means 模型
    model = kmeans.fit(dataset)		#建立模型

    # Evaluate clustering by computing Within Set Sum of Squared Errors.通过计算误差项平方和内的聚类分析
    wssse = model.computeCost(dataset)
    print("Within Set Sum of Squared Errors = " + str(wssse))

    # 显示结果  clusterCenters 聚类中心
    centers = model.clusterCenters()
    print("Cluster Centers: ")
    for center in centers:
        print(center)
    # $example off$

    spark.stop()